Ir al contenido

MATEMÁTICA ESTRUCTURAL

https://artintechnology-dijuris.odoo.com/web/image/product.template/76899/image_1920?unique=2c2713f

Edición: 1ª, 2009

Formato: Rústica - Pasta blanda

ISBN: 978-958-695-452-5

Medidas: 24 x 17 x 1.6

País de origen: Colombia

Tipo: Impreso


555.00 555.0 MXN 555.00

555.00

No está disponible para venta

Esta combinación no existe.

Este libro está concebido como una introducción a las matemáticos a partir de la noción de conjunto como pilar fundamental, y a partir de un enfoque riguroso y lógico en el cual se introducen y utilizan los distintos métodos de demostración para establecer afirmaciones. Se estudian diversos temas como la teoría intuitiva de conjuntos, la inducción matemática, el conteo, la divisibilidad, las relaciones y las funciones, las relaciones de equivalencia y la relación de equipotencia entre conjuntos, la cual da pie al estudio del cardinal o "tamaño" de un conjunto. Además, se introduce el concepto de isomorfismo, que formalizo la idea de similitud estructural.

Matemática estructural está pensado como texto guía paro un curso introductorio a los matemátiaos puras a nivel universitario. Sin embargo, este libro también puede ser utilizado en otros contextos como, por ejemplo, en cursos de matemáticas discretas para estudiantes de ingeniería, economía u otras disciplinas afines, o en los últimos cursos de matemáticas de educación secundaria.

Introducción
Agradecimientos

1. Conjuntos
1.1. Conceptos fundamentales
1.2. Propiedades de la relación C; y el conjunto potencia
1.3. Operaciones básicas entre conjuntos
1.4. Álgebra de conjuntos: pruebas sin doble inclusión
1.5. Unión e intersección generalizadas
1.6. Producto cartesiano

Proyecto
Lecturas adicionales

2. Inducción: los números naturales
2.1. El Principio del Buen Orden
2.2. Demostraciones por inducción
2.3. Definiciones por recursión
2.4. Isomorfismos entre estructuras ordenadas
2.5. Conteo mediante inducción

Proyecto
Lecturas adicionales

3. Divisibilidad: los números enteros
3.1. Conceptos fundamentales y el Algoritmo de la División
3.2. El máximo común divisor
3.3. El Teorema Fundamental de la Aritmética
3.4. Sucesiones finalmente nulas y el TFA
3.5. Congruencias y el Pequeño Teorema de Fermat
3.6. El Teorema Chino del Residuo

Proyecto
Lecturas adicionales

4 Relaciones y funciones
4.1. Relaciones
4.2. Clausura de una relación
4.3. Funciones
4.4: Relaciones de equivalencia
4.5. Construcción de los números enteros y los racionales
4.6. Conteo mediante relaciones de equivalencia Proy
Lecturas adicionales

5. Cardinales
5.1. Conceptos fundamentales
5.2. El Teorema de Cantor-Schróder-Bernstein
5.3. Conjuntos finitos
5.4. Conjuntos enumerables
5.5. Conjuntos infinitos no enumerables Proyecto

Lecturas adicionales

6. Estructuras matemáticas
6.1. Conceptos fundamentales
6.2. Grupos
6.3. Isomorfismos entre estructuras

Proyecto
Lecturas adicionales

A. Lógica
A.1. Lógica proposicional
A.2. La implicación
A.3. Demostraciones
A.4. Lógica de predicados

Bibliografía
Índice analítico
Índice de símbolos


Términos y condiciones
Garantía de devolución de 30 días
Envío: 2-3 días laborales